资源类型

期刊论文 1551

会议视频 78

会议专题 1

年份

2024 1

2023 106

2022 164

2021 148

2020 107

2019 89

2018 99

2017 88

2016 67

2015 82

2014 57

2013 51

2012 46

2011 51

2010 53

2009 47

2008 46

2007 56

2006 52

2005 37

展开 ︾

关键词

能源 18

指标体系 12

智能制造 11

系统工程 10

开放的复杂巨系统 7

系统集成 7

钱学森 7

技术体系 6

电力系统 5

系统科学 5

2022全球十大工程成就 4

仿真 4

农业科学 4

可持续发展 4

战略性新兴产业 4

标准体系 4

电动汽车 4

系统 4

Agent 3

展开 ︾

检索范围:

排序: 展示方式:

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation and carbon emission reduction

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-022-1536-5

摘要:

• Mitigating energy utilization and carbon emission is urgent for wastewater treatment.

关键词: Wastewater treatment     Artificial photosynthesis     Microbial photoelectrochemical (MPEC) system     Carbon neutral     Renewable energy    

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1061-8

摘要:

•The efficient PEC degradation of RhB is realized using no photocatalyst.

•The efficient PEC degradation of RhB features the low salinity.

•The PEC degradation of RhB takes place on the anode and cathode simultaneously.

关键词: Energy relay structure     Energy saving     Photocatalyst-free and low-salinity degradation     Photoelectrochemical cell    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Enhanced performance of NiF/BiVO photoanode for photoelectrochemical water splitting

《能源前沿(英文)》 2021年 第15卷 第3期   页码 760-771 doi: 10.1007/s11708-021-0781-9

摘要: The serious surface charge recombination and fatigued photogenerated carriers transfer of the BiVO4 photoanode restrict its photoelectrochemical (PEC) water splitting performance. In this work, nickel fluoride (NiF2) is applied to revamp pure BiVO4 photoanode by using a facile electrodeposition method. As a result, the as-prepared NiF2/BiVO4 photoanode increases the dramatic photocurrent density by approximately 180% compared with the pristine BiVO4 photoanode. Furthermore, the correlative photon-to-current conversion efficiency, the charge injection, and the separation efficiency, as well as the hydrogen generation of the composite photoanode have been memorably enhanced due to the synergy of NiF2 and BiVO4. This study may furnish a dependable guidance in fabricating the fluoride-based compound/semiconductor composite photoanode system.

关键词: BiVO4     NiF2     heterojunction     photoelectrochemical water splitting    

Spontaneous polarization enhanced bismuth ferrate photoelectrode: fabrication and boosted photoelectrochemical

《能源前沿(英文)》 2021年 第15卷 第3期   页码 781-790 doi: 10.1007/s11708-021-0782-8

摘要: In this paper, the fabrication of a highly orientated Bi2Fe4O9 (BFO) photoelectrode in the presence of two-dimensional (2D) graphene oxide (GO) was reported. It was found that the GO can be used as a template for controlling the growth of BFO, and the nanoplate composites of BFO/reduced graphene oxide (RGO) with a high orientation can be fabricated. The thickness of the nanoplates became thinner as the ratio of GO increased. As a result, the ferroelectric spontaneous polarization unit arranges itself in the space in a periodic manner, leading to the formation of a polarization field along a special direction. Therefore, the created built-in electric field of the nanoplate composites of BFO/RGO is improved upon the increase of the amount of RGO. As expected, carrier separation is enhanced by the built-in electric field, therefore substantially enhancing the photoelectrochemical (PEC) activity of water splitting compared to pure BFO under the irradiation of visible-light.

关键词: bismuth ferrate     ferroelectric polarisation     photoelectrochemical (PEC) water splitting     graphene oxide (GO)     high orientation    

Enhanced photoelectrochemical water splitting with a donor-acceptor polyimide

《能源前沿(英文)》 doi: 10.1007/s11708-023-0910-8

摘要: Polyimide (PI) has emerged as a promising organic photocatalyst owing to its distinct advantages of high visible-light response, facile synthesis, molecularly tunable donor-acceptor structure, and excellent physicochemical stability. However, the synthesis of high-quality PI photoelectrode remains a challenge, and photoelectrochemical (PEC) water splitting for PI has been less studied. Herein, the synthesis of uniform PI photoelectrode films via a simple spin-coating method was reported, and their PEC properties were investigated using melamine as donor and various anhydrides as acceptors. The influence of the conjugate size of aromatic unit (phenyl, biphenyl, naphthalene, perylene) of electron acceptor on PEC performance were studied, where naphthalene-based PI photoelectrode exhibited the highest photocurrent response. This is resulted from the unification of wide-range light absorption, efficient charge separation and transport, and strong photooxidation capacity. This paper expands the material library of polymer films for PEC applications and contributes to the rational design of efficient polymer photoelectrodes.

关键词: polyimide (PI) film     photoelectrochemistry     band structure engineering     aromatic unit    

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 777-798 doi: 10.1007/s11705-022-2148-0

摘要: As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

关键词: photoelectrochemical water splitting     photoelectrodes     hydrogen production     charge separation     catalytic mechanism    

Erratum to: Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated

《能源前沿(英文)》 2022年 第16卷 第5期   页码 876-877 doi: 10.1007/s11708-022-0832-x

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

《能源前沿(英文)》 2021年 第15卷 第3期   页码 596-599 doi: 10.1007/s11708-021-0745-0

摘要: Photoelectrochemical (PEC) water splitting is regarded as a promising way for solar hydrogen production, while the fast development of photovoltaic-electrolysis (PV-EC) has pushed PEC research into an embarrassed situation. In this paper, a comparison of PEC and PV-EC in terms of efficiency, cost, and stability is conducted and briefly discussed. It is suggested that the PEC should target on high solar-to-hydrogen efficiency based on cheap semiconductors in order to maintain its role in the technological race of sustainable hydrogen production.

关键词: hydrogen production     photovoltaic     electrocatalysis     photoelectrocatalysis     water splitting    

Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1433-3

摘要:

• Short-term effect of the pyridine exposure on the SAD process was investigated.

关键词: Anammox     Inhibition     Metabolic pathway     Microbial community     Pyridine     SAD    

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous

《能源前沿(英文)》 2021年 第15卷 第3期   页码 772-780 doi: 10.1007/s11708-021-0783-7

摘要: MoS2 is a promising electrocatalyst for hydrogen evolution reaction and a good candidate for cocatalyst to enhance the photoelectrochemical (PEC) performance of Si-based photoelectrode in aqueous electrolytes. The main challenge lies in the optimization of the microstructure of MoS2, to improve its catalytic activity and to construct a mechanically and chemically stable cocatalyst/Si photocathode. In this paper, a highly-ordered mesoporous MoS2 was synthesized and decorated onto a TiO2 protected p-silicon substrate. An additional TiO2 necking was introduced to strengthen the bonding between the MoS2 particles and the TiO2 layer. This meso-MoS2/TiO2/p-Si hybrid photocathode exhibited significantly enhanced PEC performance, where an onset potential of +0.06 V (versus RHE) and a current density of −1.8 mA/cm2 at 0 V (versus RHE) with a Faradaic efficiency close to 100% was achieved in 0.5 mol/L H2SO4. Additionally, this meso-MoS2/TiO2/p-Si photocathode showed an excellent PEC ability and durability in alkaline media. This paper provides a promising strategy to enhance and protect the photocathode through high-performance surface cocatalysts.

关键词: photoelectrocatalysis     hydrogen evolution     Si photocathode     mesoporous MoS2    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1342-x

摘要:

• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD.

关键词: Pig manure     Antibiotics     Anaerobic digestion     Resistance genes     Microbial community    

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1761-1771 doi: 10.1007/s11705-022-2195-6

摘要: Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

关键词: microbial electrosynthesis     hydrogen evolution reaction     metalloporphyrins     biocompatibility     CO2 conversion    

标题 作者 时间 类型 操作

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation and carbon emission reduction

期刊论文

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Enhanced performance of NiF/BiVO photoanode for photoelectrochemical water splitting

期刊论文

Spontaneous polarization enhanced bismuth ferrate photoelectrode: fabrication and boosted photoelectrochemical

期刊论文

Enhanced photoelectrochemical water splitting with a donor-acceptor polyimide

期刊论文

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven

期刊论文

Erratum to: Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated

期刊论文

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

期刊论文

Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process

期刊论文

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

期刊论文

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

期刊论文